In this module, you'll learn about caching strategies and Big O notation. Understanding these concepts is crucial for writing efficient code and optimizing performance.
Caching is a technique used to store results of expensive operations for future use. This video explains the concept of caching and when to use it.
Related Practice: LeetCode: LRU Cache - A more advanced caching implementation challenge.
This video focuses on planning a caching implementation, considering what data to cache and how to structure your cache.
/* 1. Create a cache object to store results 2. When function is called with input: a. Check if input exists as a key in the cache b. If exists, return the cached value c. If not, perform the calculation d. Store the result in cache with input as key e. Return the calculated result */
In this video, you'll implement a caching solution in JavaScript, translating your plan into working code.
// Without caching - exponential time complexity O(2^n) function fibonacci(n) { if (n <= 1) return n; return fibonacci(n - 1) + fibonacci(n - 2); } // With caching - linear time complexity O(n) function memoizedFibonacci() { // Cache object to store previously computed values const cache = {}; // Inner function that uses the cache return function fib(n) { // Check if we have already calculated this value if (n in cache) { return cache[n]; } // Base cases if (n <= 1) { return n; } // Calculate and cache the result cache[n] = fib(n - 1) + fib(n - 2); return cache[n]; }; } // Create the memoized function const fastFib = memoizedFibonacci(); // Compare performance console.time('Without caching'); fibonacci(30); // Will be very slow console.timeEnd('Without caching'); console.time('With caching'); fastFib(30); // Will be very fast console.timeEnd('With caching');
Related Practice: LeetCode: Climbing Stairs - A problem well-suited for caching/memoization.
Big O notation is a mathematical notation used to describe the performance or complexity of an algorithm. This video will help you understand how to analyze and compare algorithm efficiency.
// O(1) - Constant time function getFirstElement(array) { return array[0]; } // O(n) - Linear time function sum(array) { let total = 0; for (let i = 0; i < array.length; i++) { total += array[i]; } return total; } // O(n²) - Quadratic time function bubbleSort(array) { for (let i = 0; i < array.length; i++) { for (let j = 0; j < array.length - i - 1; j++) { if (array[j] > array[j + 1]) { [array[j], array[j + 1]] = [array[j + 1], array[j]]; // Swap } } } return array; }
Related Practice: LeetCode: Contains Duplicate - Practice comparing O(n²) vs O(n) solutions.
Complete the Module 2 Guided Project to practice implementing caching strategies and analyzing algorithm complexity.
Instead of using CodeSignal Arcade which is no longer available, we recommend the following LeetCode collections that follow the same principles and provide great alternatives for interview preparation: