Learn how to implement an efficient recursive search algorithm for Binary Search Trees. Master the technique of leveraging BST properties to optimize search operations.
A Binary Search Tree has these key properties:
Search operation advantages:
class BSTNode:
    def __init__(self, value):
        self.value = value
        self.left = None
        self.right = None
                                def search(self, value):
    return self._search_recursive(self.root, value)
                                def _search_recursive(self, node, value):
    # Base case 1: Empty tree or not found
    if node is None:
        return None
    # Base case 2: Value found
    if node.value == value:
        return node
    # Recursive cases
                                # Inside _search_recursive after base cases
if value < node.value:
    # Search left subtree (smaller values)
    return self._search_recursive(node.left, value)
else:
    # Search right subtree (larger values)
    return self._search_recursive(node.right, value)
                                class BST:
    def __init__(self):
        self.root = None
    def search(self, value):
        return self._search_recursive(self.root, value)
    def _search_recursive(self, node, value):
        # Base case 1: Empty tree or not found
        if node is None:
            return None
        # Base case 2: Value found
        if node.value == value:
            return node
        # Recursive cases
        if value < node.value:
            # Search left subtree (smaller values)
            return self._search_recursive(node.left, value)
        else:
            # Search right subtree (larger values)
            return self._search_recursive(node.right, value)
                            Now that you've learned how to implement a recursive search in a Binary Search Tree, try these challenges to reinforce your understanding.
Implement two methods to find the minimum and maximum values in a BST.
findMin() to find the minimum value in the BSTfindMax() to find the maximum value in the BSTclass BST:
    # ... existing implementation
    def find_min(self):
        # Your code here
        pass
    def _find_min_recursive(self, node):
        # Your code here
        pass
    def find_max(self):
        # Your code here
        pass
    def _find_max_recursive(self, node):
        # Your code here
        pass
                        Implement a method that counts how many nodes have values in a given range [min, max].
countNodesInRange(min, max) that returns the count of nodes
                                    with values between min and max (inclusive)class BST:
    # ... existing implementation
    def count_nodes_in_range(self, min_value, max_value):
        return self._count_nodes_in_range_recursive(self.root, min_value, max_value)
    def _count_nodes_in_range_recursive(self, node, min_value, max_value):
        # Your code here
        pass
                        If you want more practice with BST operations, check out these LeetCode problems: